3.2281 \(\int \frac{1}{\sqrt{d+e x} \left (a+b x+c x^2\right )} \, dx\)

Optimal. Leaf size=199 \[ \frac{2 \sqrt{2} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}-\frac{2 \sqrt{2} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}} \]

[Out]

(-2*Sqrt[2]*Sqrt[c]*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b - Sq
rt[b^2 - 4*a*c])*e]])/(Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]
) + (2*Sqrt[2]*Sqrt[c]*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b +
 Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])
*e])

_______________________________________________________________________________________

Rubi [A]  time = 0.725992, antiderivative size = 199, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.136 \[ \frac{2 \sqrt{2} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}-\frac{2 \sqrt{2} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}} \]

Antiderivative was successfully verified.

[In]  Int[1/(Sqrt[d + e*x]*(a + b*x + c*x^2)),x]

[Out]

(-2*Sqrt[2]*Sqrt[c]*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b - Sq
rt[b^2 - 4*a*c])*e]])/(Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]
) + (2*Sqrt[2]*Sqrt[c]*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b +
 Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])
*e])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 49.1304, size = 189, normalized size = 0.95 \[ - \frac{2 \sqrt{2} \sqrt{c} \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d + e x}}{\sqrt{b e - 2 c d + e \sqrt{- 4 a c + b^{2}}}} \right )}}{\sqrt{- 4 a c + b^{2}} \sqrt{b e - 2 c d + e \sqrt{- 4 a c + b^{2}}}} + \frac{2 \sqrt{2} \sqrt{c} \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d + e x}}{\sqrt{b e - 2 c d - e \sqrt{- 4 a c + b^{2}}}} \right )}}{\sqrt{- 4 a c + b^{2}} \sqrt{b e - 2 c d - e \sqrt{- 4 a c + b^{2}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/(e*x+d)**(1/2)/(c*x**2+b*x+a),x)

[Out]

-2*sqrt(2)*sqrt(c)*atan(sqrt(2)*sqrt(c)*sqrt(d + e*x)/sqrt(b*e - 2*c*d + e*sqrt(
-4*a*c + b**2)))/(sqrt(-4*a*c + b**2)*sqrt(b*e - 2*c*d + e*sqrt(-4*a*c + b**2)))
 + 2*sqrt(2)*sqrt(c)*atan(sqrt(2)*sqrt(c)*sqrt(d + e*x)/sqrt(b*e - 2*c*d - e*sqr
t(-4*a*c + b**2)))/(sqrt(-4*a*c + b**2)*sqrt(b*e - 2*c*d - e*sqrt(-4*a*c + b**2)
))

_______________________________________________________________________________________

Mathematica [A]  time = 0.445612, size = 176, normalized size = 0.88 \[ \frac{2 \sqrt{2} \sqrt{c} \left (\frac{\tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{e \sqrt{b^2-4 a c}-b e+2 c d}}\right )}{\sqrt{e \left (\sqrt{b^2-4 a c}-b\right )+2 c d}}\right )}{\sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]  Integrate[1/(Sqrt[d + e*x]*(a + b*x + c*x^2)),x]

[Out]

(2*Sqrt[2]*Sqrt[c]*(-(ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - b*e +
 Sqrt[b^2 - 4*a*c]*e]]/Sqrt[2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e]) + ArcTanh[(Sqrt
[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]]/Sqrt[2*c*d -
 (b + Sqrt[b^2 - 4*a*c])*e]))/Sqrt[b^2 - 4*a*c]

_______________________________________________________________________________________

Maple [A]  time = 0.027, size = 194, normalized size = 1. \[ -2\,{\frac{ce\sqrt{2}}{\sqrt{-{e}^{2} \left ( 4\,ac-{b}^{2} \right ) }\sqrt{ \left ( -be+2\,cd+\sqrt{-{e}^{2} \left ( 4\,ac-{b}^{2} \right ) } \right ) c}}{\it Artanh} \left ({\frac{c\sqrt{ex+d}\sqrt{2}}{\sqrt{ \left ( -be+2\,cd+\sqrt{-{e}^{2} \left ( 4\,ac-{b}^{2} \right ) } \right ) c}}} \right ) }-2\,{\frac{ce\sqrt{2}}{\sqrt{-{e}^{2} \left ( 4\,ac-{b}^{2} \right ) }\sqrt{ \left ( be-2\,cd+\sqrt{-{e}^{2} \left ( 4\,ac-{b}^{2} \right ) } \right ) c}}\arctan \left ({\frac{c\sqrt{ex+d}\sqrt{2}}{\sqrt{ \left ( be-2\,cd+\sqrt{-{e}^{2} \left ( 4\,ac-{b}^{2} \right ) } \right ) c}}} \right ) } \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/(e*x+d)^(1/2)/(c*x^2+b*x+a),x)

[Out]

-2*c*e/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c
)^(1/2)*arctanh(c*(e*x+d)^(1/2)*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c
)^(1/2))-2*c*e/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(
1/2))*c)^(1/2)*arctan(c*(e*x+d)^(1/2)*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/
2))*c)^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{{\left (c x^{2} + b x + a\right )} \sqrt{e x + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^2 + b*x + a)*sqrt(e*x + d)),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + b*x + a)*sqrt(e*x + d)), x)

_______________________________________________________________________________________

Fricas [A]  time = 0.255912, size = 3565, normalized size = 17.91 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^2 + b*x + a)*sqrt(e*x + d)),x, algorithm="fricas")

[Out]

-1/2*sqrt(2)*sqrt((2*c*d - b*e + ((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e +
(a*b^2 - 4*a^2*c)*e^2)*sqrt(e^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)
*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (
a^2*b^2 - 4*a^3*c)*e^4)))/((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2
- 4*a^2*c)*e^2))*log(4*sqrt(e*x + d)*c*e + sqrt(2)*((b^2 - 4*a*c)*e^2 - (2*(b^2*
c^2 - 4*a*c^3)*d^3 - 3*(b^3*c - 4*a*b*c^2)*d^2*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)
*d*e^2 - (a*b^3 - 4*a^2*b*c)*e^3)*sqrt(e^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c -
 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c
)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4)))*sqrt((2*c*d - b*e + ((b^2*c - 4*a*c^2)*d^2
- (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2)*sqrt(e^2/((b^2*c^2 - 4*a*c^3)*d^4
 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^
3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4)))/((b^2*c - 4*a*c^2)*d^2 - (b^3
- 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2))) + 1/2*sqrt(2)*sqrt((2*c*d - b*e + ((b^
2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2)*sqrt(e^2/((b^2
*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2
)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4)))/((b^2*c - 4
*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2))*log(4*sqrt(e*x + d)*
c*e - sqrt(2)*((b^2 - 4*a*c)*e^2 - (2*(b^2*c^2 - 4*a*c^3)*d^3 - 3*(b^3*c - 4*a*b
*c^2)*d^2*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d*e^2 - (a*b^3 - 4*a^2*b*c)*e^3)*sqr
t(e^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c
- 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4)))*
sqrt((2*c*d - b*e + ((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^
2*c)*e^2)*sqrt(e^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4
 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a
^3*c)*e^4)))/((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^
2))) - 1/2*sqrt(2)*sqrt((2*c*d - b*e - ((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*
d*e + (a*b^2 - 4*a^2*c)*e^2)*sqrt(e^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*
b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e
^3 + (a^2*b^2 - 4*a^3*c)*e^4)))/((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (
a*b^2 - 4*a^2*c)*e^2))*log(4*sqrt(e*x + d)*c*e + sqrt(2)*((b^2 - 4*a*c)*e^2 + (2
*(b^2*c^2 - 4*a*c^3)*d^3 - 3*(b^3*c - 4*a*b*c^2)*d^2*e + (b^4 - 2*a*b^2*c - 8*a^
2*c^2)*d*e^2 - (a*b^3 - 4*a^2*b*c)*e^3)*sqrt(e^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b
^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a
^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4)))*sqrt((2*c*d - b*e - ((b^2*c - 4*a*c^2
)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2)*sqrt(e^2/((b^2*c^2 - 4*a*c^
3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2
*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4)))/((b^2*c - 4*a*c^2)*d^2 -
 (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2))) + 1/2*sqrt(2)*sqrt((2*c*d - b*e
- ((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2)*sqrt(e^2
/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*b^2*c - 8*a
^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e^4)))/((b^2
*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2*c)*e^2))*log(4*sqrt(e*x
 + d)*c*e - sqrt(2)*((b^2 - 4*a*c)*e^2 + (2*(b^2*c^2 - 4*a*c^3)*d^3 - 3*(b^3*c -
 4*a*b*c^2)*d^2*e + (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d*e^2 - (a*b^3 - 4*a^2*b*c)*e^
3)*sqrt(e^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e + (b^4 - 2*a*
b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2 - 4*a^3*c)*e
^4)))*sqrt((2*c*d - b*e - ((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2
- 4*a^2*c)*e^2)*sqrt(e^2/((b^2*c^2 - 4*a*c^3)*d^4 - 2*(b^3*c - 4*a*b*c^2)*d^3*e
+ (b^4 - 2*a*b^2*c - 8*a^2*c^2)*d^2*e^2 - 2*(a*b^3 - 4*a^2*b*c)*d*e^3 + (a^2*b^2
 - 4*a^3*c)*e^4)))/((b^2*c - 4*a*c^2)*d^2 - (b^3 - 4*a*b*c)*d*e + (a*b^2 - 4*a^2
*c)*e^2)))

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{d + e x} \left (a + b x + c x^{2}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(e*x+d)**(1/2)/(c*x**2+b*x+a),x)

[Out]

Integral(1/(sqrt(d + e*x)*(a + b*x + c*x**2)), x)

_______________________________________________________________________________________

GIAC/XCAS [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^2 + b*x + a)*sqrt(e*x + d)),x, algorithm="giac")

[Out]

Timed out